Последнее из V.I.P.-раздела

16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
16-Янв
15-Янв
15-Янв
15-Янв
15-Янв

Новости о коронавирусе

GeekBrains - Машинное обучение. Часть 4 из 5 (2020)

Ответить на тему
 
Автор Сообщение

Yulya ®

Машинное обучение. Часть 4 из 5
Автор:
GeekBrains
Программа
30+ онлайн-уроков, более 65 часов обучающего контента и практика после каждого занятия
Длительность: 5 месяцев.

Модуль 1. Теория вероятностей и математическая статистика
Модуль 2. Библиотеки Python для Data Science: Numpy, Matplotlib, Scikit-learn
Модуль 3. Библиотеки Python для Data Science: продолжение
Модуль 4. Алгоритмы анализа данных
Модуль 5. Системы машинного обучения в Production

Подробная программа:

Теория вероятностей и математическая статистика
  • Случайные события. Условная вероятность. Формула Байеса. Независимые испытания
  • Дискретные случайные величины. Закон распределения вероятностей. Биномиальный закон распределения. Распределение Пуассона
  • Описательная статистика. Качественные и количественные характеристики популяции. Графическое представление данных
  • Непрерывные случайные величины. Функция распределения и плотность распределения вероятностей. Равномерное и нормальное распределение. Центральная предельная теорема
  • Проверка статистических гипотез. P-значения. Доверительные интервалы. A/B-тестирование
  • Взаимосвязь величин. Параметрические и непараметрические показатели корреляции. Корреляционный анализ
  • Многомерный статистический анализ. Линейная регрессия
  • Дисперсионный анализ. Логистическая регрессия
Курсовой проект
Разведочный анализ данных (EDA) на основе выбранного датасета: визуализация, корреляционный, дисперсионный и факторный анализ
Библиотеки Python для Data Science: Numpy, Matplotlib, Scikit-learn
  • Введение в курс. Вебинар
  • Вычисления с помощью Numpy. Работа с данными в Pandas. Видеоурок
  • Вычисления с помощью Numpy. Работа с данными в Pandas. Вебинар
  • Визуализация данных в Matplotlib. Видеоурок
  • Визуализация данных в Matplotlib. Вебинар
  • Обучение с учителем в Scikit-learn. Видеоурок
  • Обучение с учителем в Scikit-learn. Вебинар
  • Обучение без учителя в Scikit-learn. Видеоурок
  • Обучение без учителя в Scikit-learn и введение в итоговый проект. Вебинар
  • Консультация по итоговому проекту. Вебинар
Курсовой проект
Соревнование на платформе Kaggle по предсказанию цены на недвижимость, решение задачи регрессии
Библиотеки Python для Data Science: продолжение
  • Введение в задачу классификации. Постановка задачи и подготовка данных
  • Анализ данных и проверка статистических гипотез
  • Построение модели классификации
  • Оценка и интерпретация полученной модели. Обсуждение курсового проекта
Курсовой проект
Соревнование на платформе Kaggle по кредитному скорингу, решение задачи классификации
Алгоритмы анализа данных
  • Алгоритм линейной регрессии. Градиентный спуск
  • Масштабирование признаков. L1- и L2-регуляризация. Стохастический градиентный спуск
  • Логистическая регрессия. Log Loss
  • Алгоритм построения дерева решений
  • Случайный лес
  • Градиентный бустинг (AdaBoost)
  • Классификация с помощью KNN. Кластеризация K-means
  • Снижение размерности данных
Курсовой проект
Участие в одном или двух соревнованиях на Kaggle: предсказать средний балл на экзамене по математике, который получают ученики репетиторов (задача регрессии); предсказать, подойдет ли репетитор для подготовки к экзамену по математике (задача классификации)
Системы машинного обучения в Production
  • Введение в задачу предсказания оттока. Формализация задачи и сбор сырых данных
  • Загрузка данных и построение обучающей выборки. Анализ и предобработка датасета. Балансировка классов
  • Выбор и обучение модели на отобранных признаках. Сравнение качества и оценка модели
  • Оценка потенциального влияния на бизнес. Масштабирование решения
  • Подготовка к продакшену. Планировщик задач и перенос проекта из Jupyter в PyCharm
Курсовой проект
Оценка потенциального влияния на бизнес ML-решения, построение модели оттока клиентов в игровых проектах и подготовка кода для Production в PyCharm
Продажник
↓ Скачать: ↓
Скачать .torrent

Для того, чтобы скачать торрент-файл

GeekBrains - Машинное обучение. Часть 4 из 5 (2020)

с нашего сайта, Вам необходимо Войти на сайт под своим логином! Если у Вас ещё нет логина, тогда Вам нужно сначала Зарегистрироваться!

Как скачивать? · Что такое торрент? · Рейтинг и ограничения

Показать сообщения:    
Ответить на тему

GeekBrains - Машинное обучение. Часть 4 из 5 (2020) скачать торрент (torrent), видеоуроки, тренинги, обучающее видео и видеокурсы

Текущее время: Сегодня 21:53

Часовой пояс: GMT + 4



Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы